\\ \title{
The Travelling Salesman\\ \title{
The Travelling Salesman Problem
}

Solved in Visual Prolog 7.5 language by Ferenc Nagy, Budapest, Hungary.
Date of last revision: October 11, 2015.

CHAPTERS			
$\underline{\text { OBJECT }}$	ALGORITHMS	OUTPUT OF MODEL	$\underline{\text { USER }}$

Object Model

Next Chapter

Internal and External Resources of the Program

Data Flow

The Most Important Inherited Declarations from Flags and Collect_Settings Objects

	Domains	Explanations	Entities	Name	Domain	Contents
F	Identifier	String identifying the instance	Class properties	active_member	Identifier	Identifier of the active member of the collection of instances
A	Protection	Allowed operations on instance	Instance properties	protection_flag	protection	Protection flag of the instance
G	Variable	Editable.		validation_flag	validation	Validation flag of the instance
S	Evaluated	Fixed		label	string	Long description of the instance
	Referenced	Fixed and must not be deleted	Instance predicates	formatLabel	string	Format labels for output
	Validation	State of variable		interpretLabel	-	Interpretation of batch LABEL commands
	Unchecked	Not yet read and checked	Constants	f_symbol_and_int eger_unit	string	Same format for lists of fields having identical sequence of type
	Valid	Read and valid		f_longstring_urea I_unit		
	Invalid	Read and discarded		f_symbol_and_re al_unit		
C	Purpose	Symbols defining the usage of the settings	Constants	general_masks	string_list	File selection masks
				Indirect_masks		

Axes of the Coordinate Systems

Place

I. Creation data

1. An identifier: NAME
2. The input coordinate system is common for all places of the set
3. , 4. [, 5.] Two or three coordinates depending on the coordinate system
II. Inherited properties
4. Status FLAGS
III. Methods for
5. Creation and modification from batch input files and interactive dialogs
6. Conversion between coordinate systems
7. Distance calculation
8. Classification of points supporting the projection of the data

Place Set

The place sets may be created
i. either in empty state
ii. or filled with places copied from another place set.

These places are converted to the coordinate system of the target set.

I. Own properties

1. An identifier: Title
2. A property: the coordinate system of all added and replaced places.
3. A collection of PLACE OBJECTS having p members
4. Validating base on relative distance of the places
II. Inherited properties
5. Status FLAGS
III. They have just like as other objects
6. Procedures supporting their creation and modification
a) from batch input files
b) and interactive dialogs

Selection of Distance Functions

Check coordinate system

Plans and Transactions

I. The plans have

1. An identifier: VERSION
2. The kind of search:
a) "full",
b) „greedy"§
c) „undo".
3. A collection made of tuples of
i. transactions defined for this kind and
ii. allowed number of their repeat counts given as
i. plain integers or
ii. simple formulae if necessary ${ }^{\text {" }}$.
II. The PLAN object inherit methods and properties

- From the FLAGS object.
III. They have just like as other objects
- Procedures supporting their creation and modification
a) from batch input files
b) and interactive dialogs.
IV. The plans may be created
a) either in empty state
b) or filled with properties and the collection of transactions from another plan.
§: The fuzzy search uses the same transactions as the greedy one, only the method of the comparison of the gained distances is different from the greedy search. The greedy and fuzzy search is distinguished in the SOLUTION object.
\mathfrak{x} : Some transactions can be executed only once in a plan, so they need not repeat counts.

General Properties of the SOlution Object

I. Own properties and methods

1. An identifier: VERSION
2. This object is based on a given PLACE SET
3. and a PLAN of transactions.
4. Its main method executes the plan leading to
a) a closed route around the members of the place set or
b) a set of opened routes.
II. Inherited properties and methods: from FLAGS object.
III. They have just like as other objects

- Procedures supporting their creation and modification
a) from batch input files
b) or interactive dialogs.

Special Properties of the Solution Object

I. Initial state:

a) Set of unconnected places.
i. the method of distance calculation.
II. Restriction about the examined places
a) The members of the whole place set are examined.
b) Those places are examined whose distances from a central place is less than or equal to a given threshold.
c) Those places are examined whose distances from a central place is greater than a given threshold.
III. Selection of the best solution
a) Greedy and deterministic: The smallest added distance and the alphabetical order of the places determines the added edges.
b) Fuzzy and probabilistic: If more than one added edges result the same increase of the total length then the program randomly selects from them.

Basic Properties of the Solution Objects

I. Own properties and methods

1. An identifier: VERSION
2. This object is based on a given Place Set
3. and a PLAN of transactions.
4. Its main method executes the plan leading to
a) a closed route around the all members of the place set or
b) a set of opened routes and unused places.
II. Inherited properties and methods: from FLAGS object.
III. They have just like as other objects

- Procedures supporting their creation and modification
a) from batch input files
b) or interactive dialogs.

IV. Initial state:

A. Solution from empty state

1. Set of unconnected places and
2. The method of distance calculation
B. Continuing solution
3. Remaining unconnected places
4. Calculated distances
5. Routes found in the continued solutions
6. Transaction log of the continued solution.

V. Optional Precautions:

A. Parameters for distance validation

1. Minimal accepted distance
2. Maximal accepted distance
3. Ratio of too far neighbors.

Extra Conditions and Results of the Solution Objects

I. User-defined edges

1. Optional beginning place.
2. Optional fixed and prohibited edges.
II. Set of the examined places
a) Default: The members of the whole place set are examined.
b) Restricted: new places can be added to the existing routes from inside or outside of a region defined by its central place and a distance threshold.
III. Selection of the best solution
a) Default: Deterministic. The smallest added distance and the alphabetical order of the places determines the added edges.
b) Fuzzy: If more than one added edges result the same increase of the total length then the program randomly selects from them.
i. Parameters of random correction of distances enabling not to consume the short inadvertently.
IV. Calculated data structures
3. The triangular distance matrix
4. Routes (opened or closed, route index, total length, sequence of place indexes)
5. Transaction log.

Union

The UnION objects contain one or two solutions displayed in the same figure and the derived properties used as limits of displayed range of coordinates.

Properties

- They determine the limits of displayed ranges using the Place Sets referenced in their Used Solutions properties.
- The number of coordinates and the coordinate system must be common for them.
- The unified boundary values are counted for them.
- The recommended or user defined transformation are determined based on the applied view.
- The transformation of the longitudes are executed using the merged list of the sorted longitudes.

Report Objects

I. Identification and Sources

The results of the sOLUTIONS are finally tabulated by the Report objects.
I. Its own properties

1. Device symbol
2. Mode of output
A. Separated
B. Merged tables.
3. Unique file name or Window title of document, respectively
4. Mode of the report:
a) Single report $=$ tabulated results of a single solution
b) Comparison $=$ tabulated results of two solutions
5. Source(s) of the report (one for single report, two for comparison:
6. The identifier(s) PLACE SET from which
7. the reported SOLUTION was made.

Report Objects

II. Tabulating Methods

The results of solutions are reported in any or all of the tables below:

1. Source PLACE SET
2. Distance matrix
3. Final route(s) and their total length(s)
4. Summary of allowed and executed number of TRANSACTIONS.
5. Fate of edges: order of joining and cutting the edges between pairs of places
Each table has a generating method.

Report Objects

III. Inherited Properties and General Methods

A. From FLAGS object.
B. They have just like as other objects
\square Procedures supporting their creation and modification
a) from batch input files
b) or interactive dialogs.

IV. Subordinate objects

A. Message_Form_NF windows object holding the colored messages supported by the following objects:
B. Colored_Messages form object editing the text styles.
C. Define_Styles object calling the
D. Scilex library procedures.

Figure Objects

I. Identification and Sources

The results of the solution are finally plotted by the Figure objects.
I. Its own properties

1. Device symbol
2. Automatically generated unique identifier
3. File name of the document derived from its identifier
4. Mode of the figure:
a) \quad Single figure $=$ plotted results of a single solution
b) Comparison = tabulated results of two solutions
5. Source(s) of the report (one for single report, two for comparison:
i. The UNION of the plotted SOLUTIONS was made.
ii. Used Settings
iii. Used View

Figure Objects

II. Inherited Properties and General Methods
A. Inherited properties

- From Flags object
B. This object has just like as other objects procedures supporting their creation and modification
a) from batch input files
b) and interactive dialogs

Figure Objects

III. Displayed Information

The figures consist of rectangles containing:

1. Titles of solution, plan and place set
2. Labels of them
3. Axes -- name, unit and scale
4. Gridlines
5. The static plot of the marked places
6. Plot of the final route(s)
a) edges drawn in one step
b) with a given delay in order of their appearance.

Click on figure in order to enlarge it.

Test Plot

Subordinate Objects of Figure Objects

I. SETtings

The colors, pen styles, fonts, and sizes of the above rectangles are read from the SETTINGS.
A. Rectangular areas of the figure
B. Color compositions
C. Font definitions and sample texts
D. Locations of the message window
E. Pen styles

Rectangular Areas of the Figure

This dialog of the TestDraw program contains the sketch of the rectangular area of the figures.
The sizing of the rectangles is based on the fixed 1000×1000 pixels of the inner plot area and the sizes of the surrounding scales calculated from their heights and widths and fonts.

The „ $\mathrm{\oplus}$ " character in its title means that he default values are shown.

Subordinate Objects of Figure Objects II. View

I. Inherited properties

- From Flags object
II. This object has just like as other objects procedures supporting their creation and modification

1. from batch input files
2. and interactive dialogs

Own properties
A. The limits of clip area of shown places for each coordinates:
a) User-defined given as the center and extent of shown coordinates
b) Fitted to the range of displayed place set(s)
B. The projection methods

1. Map projections of the surface of the sphere to the plane of the map
2. Collineations of 3 -dimensional data into 2 dimensions
C. The curved routes and gridlines over the sphere are drawn instead of arcs as polylines. The number of their steps are defined by a built-in constant accuracy parameter, the maximal angle belonging to a segment.

ALGORITHMS

Next Chapter

Two-Dimensional Distance Formulae

Method	Variables	Definition	Equation or procedure
Eucledian	$\begin{aligned} & \mathrm{P}\left(\mathrm{x}_{1} ; \mathrm{y}_{1}\right) ; \\ & \mathrm{P}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \end{aligned}$	Cartesian coordinates	$d=\left[\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}\right]^{1 / 2}$
Manhattan			$\mathrm{d}=\left\|\mathrm{x}_{1}-\mathrm{x}_{2}\right\|+\left\|\mathrm{y}_{1}-\mathrm{y}_{2}\right\|$
Great-circle	$\begin{aligned} & \varphi_{1}, \varphi_{2} \\ & \lambda_{1}, \lambda_{2} \\ & R \\ & \Delta \varphi=\varphi_{2}-\varphi_{1} \\ & \Delta \lambda=\lambda_{2}-\lambda_{1} \\ & \hline \end{aligned}$	Latitude Longitude Radius	$\begin{aligned} & \mathrm{a}=\sin ^{2}(\Delta \varphi / 2)+ \\ & \cos \left(\varphi_{1}\right) \cdot \cos \left(\varphi_{2}\right) \cdot \sin ^{2}(\Delta \lambda / 2) \\ & \mathrm{c}=2 . \operatorname{atan} 2(\mathrm{Va}, \mathrm{~V}(1-\mathrm{a})) \\ & \mathrm{d}=\text { R.c } \end{aligned}$

Distance Formulae

Classification of Viewed Subset of the

Place Sets Given by Spherical Coordinates

- The coarse distribution of their latitudes and radial distances is used to recommend, allow and reject their mapping and projection methods.
- The possible range of these coordinates are split into parallel belts.
- The algorithm determining the best mapping uses

1) the places filtered by the views according to their each coordinates,
2) which belts are empty or populated, respectively.

I. Latitude Zones

Singular	Belt			Is populated? (Boolean)	Range of the latitude φ	Values of ε and ψ are given on the page of decision constants.
	Ordina1 number used on next page	Hemisphere	Zone			
YES	+4	Northern	polar	P_{N}	$\varphi \geq 90^{\circ}-\varepsilon$	
	-4	Southern	polar	P_{S}	$\varphi \leq-\left(90^{\circ}-\varepsilon\right)$	
NO	+3	Northern	high	H_{N}	$\psi \leq \varphi<90^{\circ}-\varepsilon$	
	-3	Southern	high	H_{5}	$-\psi \leq \varphi<-\left(90^{\circ}-\varepsilon\right)$	
	+2	Northern	low	L_{N}	$\varepsilon \leq \varphi<\psi$	
	-2	Southern	low	$L_{\text {s }}$	$-\varepsilon \leq \varphi<\psi$	
	+1	Northern	equatorial	Q_{N}	$0 \leq \varphi<\varepsilon$	
	-1	Southern	equatorial	$\mathrm{Q}_{\text {s }}$	$-\varepsilon<\varphi<0$	
May be	[+1, +4]	Northern	total	$\mathrm{T}_{\mathrm{N}}=\mathrm{P}_{\mathrm{N}} \vee \mathrm{H}_{\mathrm{N}} \vee L_{N} \vee \mathrm{Q}_{\mathrm{N}}$		
	[-4, -1]	Southern	total	$T_{s}=P_{s} \vee H_{s} \vee L_{s} \vee Q_{s}$		

II. Zones of Relative Distortion of Parallels

The ordinal numbers defined on the previous page of the lowest and the highest populated latitude zone determine the zones of the relative distortion.

-4	-3	-2	-1	+1	+2	+3	+4	Highest Lowest
Unacceptable	U	u	U	U	u	u	U	-4
	Chk\#1	Chk\#1	Chk\#1	Chk\#1	Chk\#1	Chk\#1	U	-3
		Chk\#1	Chk\#1	Chk\#1	Chk\#1	Chk\#1	U	-2
			Lowly	Lowly	Chk\#1	Chk\#1	U	-1
Chk\#1:				Lowly	Chk\#1	Chk\#1	U	+1
Determine range of \cos (latitude) for all places in view.		$\max (\cos \varphi)-\min (\cos \varphi)$		$<\sigma$ lowly $\geq \tau \quad$ very else moderately	Chk\#1	Chk\#1	U	+2
			Chk\#1		U	+3		
					U	+4		

Discarding of the Singular Places

The singular places are not used in the algorithm of the determination of the best central meridian.
A place given in spherical coordinates is singular if

1. its latitude is the neighborhood of the poles or
2. it is too close to the center point.

The corresponding formulae are

1. $|\varphi| \geq 90^{\circ}-\varepsilon$ and
2. $\rho \leq \zeta$, respectively.

Here φ is the latitude, and ρ is the radius coordinate;
ε and ζ are decision constants.

Decision Constants for the Mapping of Spherical Coordinates

Symbol	Explanation	Value and unit	Used in
ε	Maximal latitude difference from the poles and the equator, respectively	0.01°	Classification of places by their latitudes
ψ	Lower limit of the high latitudes	70.0°	
ζ	Threshold for central singular points in case of three-dimensional spherical coordinates	0.01 km	$\underline{\text { Permission of }}$
σ	Lower limit of the moderate distortion of parallels	0.01	$\underline{\text { cylindrical }}$
τ	Lower limit of the very big distortion of parallels expressed as the diference of the cosine of latitudes	0.2	$\underline{\text { curves }}$
β	Maximal angle belonging to a step drawn instead of the a segment of a gridline or a route over the sphere.	$\pi / 32$ radian that 5.625°	Fine drawing of

Choosing of the Recommended Map Projections of Sphere to Plane I. Cylindrical Projection

These projections map the surface of the sphere to another surface - e. g. a plane, the lateral surface of a cylinder or a cone - which can be unfolded to a plane.

Read more about projections from the external document Projection of Data on the Figures.docx

The Central Meridian

The central meridian is the straight meridian in the middle of the projection.
If it is badly chosen then the shown distances are very distorted and edges appear_ - leading _to _left frame to the right frame .

The best C central
 meridian is that when \checkmark the displayed places and routes remain in the least distorted middle of the figure and
\checkmark the resulting extent covering all κ transformed longitudes is minimal .

Determination of the Best Central Meridian

1. Gather the longitudes of the non-singular places.
2. Sort the latitudes in increasing order.
3. Discard duplicated values.
4. Add 360° to the lowest value and append the result to the end of the list.
5. Look for the maximal difference
of neighboring elements.
6. The outer bisectrix of the found angle will be the best central meridian.

The best central meridian is the outer bisectrix belonging to the maximal longitude difference.

Read more about projections from the external document Projection of Data on the Figures.docx

II. Transformation to Cartesian XYZ Coordinates

The three-dimensional spherical coordinates may be transformed to Cartesian XYZ coordinates.
In Visual Prolog notation
getX() =X :-
coordinates=s3(Latitude, Longitude, Radius),
X=Radius*cosd(Latitude) *cosd (Longitude),
!.
gety () =Y :-
coordinates=s3 (Latitude, Longitude, Radius), Y=Radius*cosd(Latitude)*sind (Longitude),
!.
getZ() =Z :-
coordinates=s3(Latitude,_Longitude, Radius),
Z=Radius*sind(Latitude),
!.

Read more about projections from the external document
Projection of Data on the Figures.docx

III-IV. Postel and Sinusoidal

Read more about projections from the external document Projection of Data on the Figures.docx

Enlarged Comparison of Projections

* The sinusoidal projection distorts the areas far from the central meridian.

* The Postel projection distorts the belts of the opposite hemisphere.

Handling of Three-Dimensional Data

A. Omitting one of the coordinates from the figure
a) If latitudes and longitudes remain then they need map projections of the surface of the sphere to the plane of the map,
b) otherwise use them as horizontal and vertical coordinates of the view.
B. Projecting them in one or two steps
a) The three Cartesian coordinates need only one more step , the collineation of three-dimensional data into two dimensions.
b) The three-dimensional spherical coordinates need two steps:

1. A map projection of the spherical coordinates to Cartesian one, namely
A. transformation of latitudes and longitudes to u and v resulting coordinates, leaving the ρ radial distance unchanged;
B. Transformation of all three spherical coordinates to x, y and z Cartesian coordinates.
2. a collineation the $(u, v, \rho),(x, y, z)$ resulting coordinates, respectively to (ξ, η) value pairs.

Recommended Method of Collineation of Place Sets

Count of shown axes

Available Kinds of Collineations of Three-Dimensional Data

Substitution of Arcs of Great-Circles by

Polylines

In case of two-dimensional spherical coordinates the routes between connected places are arcs of great-circles of the sphere. This version of program does not display the arcs as polylines in order to simplify the plotting algoritm.
If the connected places are antipodal that is

$$
\left|\varphi_{1}+\varphi_{2}\right|<\varepsilon \text { and } 180^{\circ}-\varepsilon<\left|\lambda_{1}-\lambda_{2}\right|=180^{\circ}+\varepsilon
$$

then the route is drawn using an third point $\left(\varphi_{3}, \lambda_{3}\right)$ where

$$
\lambda_{3}=\lambda_{1}
$$

and

$$
\text { if }\left|\varphi_{1}\right| \geq 90^{\circ}-\varepsilon \text { then } \varphi_{3}=0 \text { else } \varphi_{3}=90^{\circ} .
$$

In this case the splitting detailed on the next page must be done for arcs
$\left(\varphi_{1}, \lambda_{1}\right)$ to $\left(\varphi_{3}, \lambda_{3}\right)$ and
$\left(\varphi_{3}, \lambda_{3}\right)$ to $\left(\varphi_{2}, \lambda_{2}\right)$, respectively.

Splitting of the Long Arcs

If the central angle c belonging to arc $\left(\varphi_{1}, \lambda_{1}\right)$ to $\left(\varphi_{2}, \lambda_{3}\right)$ is greater than the preset β constant then the arc is divided to $N=\operatorname{int}\left(\frac{\beta}{c}\right)$ parts at factors $f_{i}=\frac{i \beta}{\dot{c}}$
The indices, the factors and the coordinates of the separating points are

$$
\begin{array}{ccc}
i=0 & f_{i}=0 & \hat{P}_{0}\left(\hat{\varphi}_{0}, \hat{\lambda}_{0}\right)=P_{1}\left(\varphi_{1}, \lambda_{1}\right) \\
i=1, \ldots, N & f_{i}=\frac{i \beta}{c} & \hat{P}_{i}\left(\hat{\varphi}_{i}, \hat{\lambda}_{i}\right) \text { counted below } \\
i=N+1 & f_{N+1}=1 & \hat{P}_{N+1}\left(\hat{\varphi}_{N+1}, \hat{\lambda}_{N+1}\right)=P_{2}\left(\varphi_{2}, \lambda_{2}\right)
\end{array}
$$

The internal cycle:
Let us substitute the above f_{i} values in place of f below and store its results φ and λ in the coordinates $\hat{\varphi}_{i}$ and $\hat{\lambda}_{i}$, respectively.

$$
\begin{aligned}
& \mathrm{A}=\sin ((1-\mathrm{f}) * \mathrm{c}) / \sin (\mathrm{c}) \\
& \mathrm{B}=\sin \left(\mathrm{f}^{*} \mathrm{c}\right) / \sin (\mathrm{c}) \\
& \mathrm{x}=\mathrm{A} * \cos \left(\varphi_{1}\right) * \cos \left(\lambda_{1}\right)+\mathrm{B} * \cos \left(\varphi_{2}\right) * \cos \left(\lambda_{2}\right) \\
& \mathrm{y}=\mathrm{A} * \cos \left(\varphi_{1}\right) * \sin \left(\lambda_{1}\right)+\mathrm{B} * \cos \left(\varphi_{2}\right) * \sin \left(\lambda_{2}\right) \\
& \mathrm{z}=\mathrm{A}^{*} \sin \left(\varphi_{1}\right)+\mathrm{B}^{*} \sin \left(\varphi_{2}\right) \\
& \varphi=\operatorname{atan} 2\left(\mathrm{z}, \mathrm{sqrt}\left(\mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2\right)\right) \\
& \lambda=\operatorname{atan} 2(\mathrm{y}, \mathrm{x})
\end{aligned}
$$

The calculation is taken from here. The symbol of variables are changed in order to match with this earlier page of the manual.

Validation of Places Checking Their Distances

This check helps the users to find the typos during the entering the coordinates of the places.

1) Check of duplicated places: If the distance of two or more places is smaller than a given limit L then probably only one of them is valid.
2) Check of outsiders:

If a place is farther from others than a given limit H then its coordinates are probably invalid. If the t_{i} ratio of too high distances is greater than a given ratio T of the counted distances then the place is outsider.

$$
\begin{aligned}
& \text { Calculate for } \forall i \in[1, p] \\
& D\left(P_{i}, P_{j}\right)<L, j=1, \ldots, p, j \neq i
\end{aligned}
$$

$$
\text { Count for } \forall i \in[1, p]
$$

$$
D\left(P_{i}, P_{j}\right)>H, j=1, \ldots, p, j \neq i
$$

$$
\Rightarrow c_{i}
$$

$$
t_{i}=\frac{c_{i}}{p-1}>T>0.5
$$

Kinds of PLANS

Kind	Essence
$\underline{\text { Full }}$	Each $(p-1)!/ 2$ possible circular permutations of the p places of the whole place set are compared or each ($s-1)!/ 2$ possible circular permutations of the s places of its selected subset are compared. ${ }^{1,2}$
Greedy	Take in account only one or very few steps of the solution in each transaction. It is name greedy because the premature consuming of certain short edges at the earlier stage of the iteration may lead to a suboptimal whole route. Each transaction returns the best added edge(s)..3,4
$\underline{\text { Undo }}$	Open at one edge or fragment the single closed routes got from the continued greedy search. It makes possible to search for another solution in a subsequent a greedy search. ${ }^{3,4}$

[^0]
Partial Solutions of Too Large Problems

Type of restriction	Cases	Mode of selection
Usage of some subsets of the solved place set.	Default: All places of the set.	---
Prefix place used in the first transaction.	Default: Any place of the set usable in the allowed transactions.	- ----
	Optional: Pre-selected places.	Give a complete place name.
Preset state of some first letters of the selected place names.		
Dedges.	Edges which must be or must remain connected.	Give two place names.
	Edges which must cut or must not be connected.	Give two place names.

The Full Search

The circular permutations of the involved places are generated recursively.
The reversed routes are ignored:
The order of 3 places is $[3,2,1]$.
The K-th place may be inserted in the route of K - 1 places
before the first point of the route $=[4,3,2,1]$;
between any other places: $[3,4,2,1],[3,2,4,1$.
The inserted place is deleted from the list of available places
The process of insertion is continued until the list of available places becomes empty.
The sum of the length of edges is calculated and compared with the lowest sum.
If the current sum is smaller then the previous sum the route is stored.

Search	Trans- action	Repeat- able	Allowed when the count of places ...	Explanation: Permute places circularly in order to find the best solutions.
Full	permute	No	\ldots is smaller than a wired-in count of places is over a preset limit $p<m$.	Compare all possible different closed routes. The count of possible routes connecting p places is $t=(p-1)!/ 2$. The value of t can be extremely large. See the factorial calculator here.

Transactions of the Solutions I. Necessary Simple Transactions

The repeatable greedy and undo transactions may use random corrections of the distances.

The formula of random correction is It uses a random number and a constant

$$
\begin{aligned}
& \hat{d}=d(1+q \omega) \\
& q \in[0,1] \\
& \omega .
\end{aligned}
$$

The table enlists the simple transactions required to build up a closed route from disconnected places adding the edges one by one.

Repeatable	Greedy transactions	Explanation
\sim	$\underline{\text { start }}$	Start a new route from two places having no connections.
	$\underline{\text { continue }}$	Continue a route with an already unused place.
	$\underline{\text { connect }}$	Connect two routes at their head or final points.
	Close the remaining single route when no unused places have been remained.	

Line Diagram of Transaction START

Start a new route from two free places.

Line Diagram of Transaction Continue

Continue a route with a free place.

Line Diagram of Transaction Connect

Connect two routes at their head or final points.

Line Diagram of Transaction CLOSE

-Close the remaining single route when no unused places are present.
-This transaction can be executed at most once during a solution.

- It does not use randomly corrected distances.

II. Sophisticated Transactions

	State of output routes	Transaction	Edges		Input				Output Count of resulting	Process	
			$\stackrel{\geqq}{\Xi}$	$\begin{aligned} & \text { סेष } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	Count of involved		Total count of			Cutting step	Joining step
					Routes	Unused places	Routes	Unused places	Routes		
$\stackrel{\sim}{\mathscr{\sim}}$	$\begin{aligned} & \stackrel{C}{U} \\ & \stackrel{Q}{0} \end{aligned}$	insert	1	2	1	1	≥ 1	≥ 1	1	Cut a route somewhere.	Insert a single place between the new endpoints.
		exchange	2	4	2	0	≥ 2	≥ 0	2	Cut out a place from both routes.	Insert the cut places at the original position of the other cut place.
		reverse	2	2	1	0	≥ 1	≥ 1	1	Cut out a part of a route.	Insert back the cut part in reversed order.
		merge	1	2	2	0	≥ 2	≥ 0	2	$\begin{aligned} & \text { Cut an edge } \\ & \text { of an } \\ & \text { unclosed } \\ & \text { route. } \end{aligned}$	Insert a selected other whole route among the new endpoints.
		swap	2	2	2	0	≥ 2	≥ 0	2	Split two opened routes into two parts.	Join the fragments cut from different input in the best order.
		clamp	0	2	2	1	=2	=1	1	None	Clamp the two input routes across the selected place.
足	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{y}{0} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$	brace	2	2	2	0	$\begin{aligned} & \geq 2 \mathrm{ALL} \\ & \text { CLOSED } \end{aligned}$	=0	1	Split two closed routes	Brace the got open routes at their both ends.

Line Diagram of Transaction INSERT

Insert a single place between two stations of the route.

Line Diagram of Transaction ReVERSE

1. Cut a part of a route
2. then insert it between the residual fragments in reversed order.

Line Diagram of Transaction Merge

Merge a whole route between two places of another route
Routes before the transaction:
[1,2,3,4] and [5,6,7,8]

Cut edge: $6 \rightarrow 7$.
A. in original order

Joined edges $6 \rightarrow 1$ and $4 \rightarrow 7$.
Route after the transaction:

$$
[5,6,1,2,3,4,7,8] .
$$

B. in reversed order Joined Edges: $7 \rightarrow 1$ and $4 \rightarrow 7$.
Route after the transaction:

$$
[5,6,4,3,2,1,7,8]
$$

Line Diagram of Transaction SwAP

1. Split two opened routes at an edge.
2. Join the fragments got from different edges.

Example

0 . Routes before the transaction:
R1=[11,12,13,14,15,16]
$R 2=[21,22,23,24,25,26]$

1. Cut edges: $14 \rightarrow 15$ and $22 \rightarrow 23$.

Fragments on the example:
F11 $=[11,12,13,14]$ and F12 $=[15,16]$
F21 $=[21,22,23,24]$ and F22 $=[25,26]$
2. Possible pairs of swapped routes:
a. $\quad S 1^{\prime}=R O(F 11)+R O(F 21)$ and

$$
S 2^{\prime}=R O(F 12)+R O(F 22),
$$

b. $\quad S 1^{\prime \prime}=R O(F 11)+R O(F 22)$ and
 $S 2^{\prime \prime}=R O(F 12)+R O(F 21)$.

The above RO(...) function means „original or reversed".

Line Diagram of Transaction EXCHANGE

Exchange a place of an opened with a place of another opened route.
Routes before the transaction:

1) $[11,12,13,14,15,16]$
2) $[21,22,23,24,25,26]$

Routes after the transaction:

1) $[11,12, \underline{23}, 14,15,16]$
2) $[21,22,13,24,25,26]$

Line Diagram of Transaction Brace

1. Select two routes. They may be either open or closed ones.
2. Open them or cut them at an internal place.
3. Brace the routes at their both ends in order to get a single closed route.

Example

0 . Two open routes before the transaction:
R1=[11,12,13,14,15,16]
R2=[21,22,23,24,25,26]

1. Cut edges: $14 \rightarrow 15$ and $24 \rightarrow 25$.

Fragments on the example:
F11 $=[11,12,13,14]$ and F12 $=[15,16]$
F21 $=[21,22,23,24]$ and F22 $=[25,26]$
3. Bracing edges: $14 \rightarrow 25,26 \rightarrow 15$,

$$
16 \rightarrow 21,24 \rightarrow 11
$$

4. The result is the closed
[11,12,13,14, 25,26, 15,16, 21,22,23,24] route.

Line Diagram of the Transaction CLAMP

1. Select two opened routes and an unused place.

2. Clamp the head or the final point of the first route through the selected unused place with the head or the final point of the second route.

Example

O. Routes before the transaction:

R1=[11,12,13,14,15,16]
R2=[21,22,23,24,25,26]

1. Cut edges: none.
2. New edges: $16 \rightarrow 99$ and $99 \rightarrow 26$.

The clamped route is the opened

[11,12,13,14,15,16, 99, 26,25,24,23 22,21].

Undoing Transactions: CLIP and Break

Transactions	State	Step	Process
Clip	Initial	0.	A closed route connecting at least three places.
	Intermediate	1.	Look for the endpoints of the longest connected ${ }^{1}$ edge.
	Final	2.	An open route.
Break	Initial	0.	A closed route connecting at least seven places.
	Intermediate	1.	Look for the of shortest unconnected ${ }^{1}$ place pair of the place set.
		2.	Look for the endpoints of the longest connected edge on the route.
		3.	Cut the found edges.
		4.	Cut the neighboring edges.
	Final	5.	Open route(s) and isolated place(s).

These transactions are not repeatable.
1 They can use randomly corrected distances.

Line Diagrams of Transactions

 BREAK and CLIP| Step | Routes
 before | Routes
 and
 isolated
 places
 after | Edges |
| :--- | :--- | :--- | :--- |
| B1. | I: [1-2-13-12-
 $11-3-4-5-6-7-8-$
 $9-10 \mid-1]$
 closed. | | Select unconnected 1-3.
 B2
 and
 C1. |
| B3. | | Select connected 5-6. | |
| B4 and 3. | Cut 10-1,1-2, 11-3, 3-4. | | |
| B4. | | Cut 5-6, 4-5,6-7. | |

OUTPUT OF THE PROGRAM

Reported Tables

Saved Figures
Message Window
File Statistic and Status Line Toolbars
Next Chapter

Output Written into the Data Folder

Root				Format	Extension	Contents	
Start	Middle		End	$\begin{aligned} & \text { Text } \\ & \text { file } \end{aligned}$	pla	Source PLACE SET.	
					dis	Triangular distance matrix,	
				for	Used plan and its transactions..		
				rou	Final route(s) and their totall ength(s).		
				tra	Allowed and executed number of		
				pro	Order of joining and cutting the edges.		
				mrg	Two or more tables merged in a single file.		
				Binary graphics	emf	FIGURE in extended metafile format. The user has to display, compress and convert it by his/her favorite tool.	
		$\begin{aligned} & \stackrel{\leftrightharpoons}{\vdots} \\ & \stackrel{1}{\circ} \end{aligned}$			Prolog data base	fil	List of read and written input and output files. used_file(i, "connectonly1.tsr"). used_file(o,"run141127135917msg.htm\|").
			Fixed =		Web page	html	Copy of the colored main message file. It may be a very big file Zip them to an archive or sellect all of their contents, copy to Excel andf save as binary files ($\left.{ }^{*} . x / s b\right)$.
					Text file	err	Call stack of the runtime errors.
Arbitrary user defined name					Batch input file	$\frac{\mathrm{tsc}}{\mathrm{tsp},}$	High level batch commands and batch commands generated by the interactive data entry dialogs; comments, rulers, error messages.

Layout of Comparative Reports and

Figures

The lines of the layers are drawn with different colors.

Excerpt of a comparative report made by WinMerge and saved as HTML.

Chapter 4

USER INTERFACE

- Modes of user input
- Using batch commands collected in input files
- Batch command packets corresponding to each objects

Modes of User Input

The user can trigger the program
I. Using batch commands collected in input files described in the following pages.
II. Interactively

1. From the Task Menu of the program
2. Using the buttons of the Project Toolbar
3. Via the interactive dialogs.

This document deals only with the batch commands
The menus, buttons and dialogs are described in a separate document tsp.chm on the author's homepage.
Most of the batch commands have interactive counterparts.
Some interactive dialogs have not corresponding batch data packets.

Menu branch	Log	Options				
Menu item	All	Message Window	Input	Validation of Distances	Solution	Styles of Colored Reports
Batch packet	None	None	None	SOLUTION PLACE SET	None	None

Structure of Input Files

The input files consist of data packet started with the command line beginning with the verbs listed in the page of Summary of Command Order and closed by the corresponding finish line.
I. The data packets may contain

- The packets shall contain comment lines belonging to the currently handled object. Their presence is recommended for better human readability of input data.
- ruler lines showing the column names and boundaries of the subsequent command lines
- specific command lines whose accepted verb+object pairs are described at the individual packets and tabulated together.
II. Comment and ruler lines are allowed between packets, too.
III. Input redirection commands can be placed between packets and within certain packets. The input continues from the ceased input file when the end of included file is reached. They serve for
- including whole data packets
- assembled by the user or
- generated by a previous run of the TSP program, respectively.

Structure of Command Lines

I. The information is arranged in the command records as a given count of fields of $n \times 12$ characters. Their contents is trimmed and transformed to lowercase before evaluation. The capital letters of the label fields are retained only.
II. The end of the command lines after the specific number of fields are ignored.
III. The instruction lines look like imperative sentences

1. with a predicate (verb) in their first field and

$$
(n=1)
$$

2. with an object name in their second field
($n=1$).
IV. The third and subsequent fields may be
3. single
a) symbolic data with special set of legal contents or
b) Unicode string data of restricted length or
c) integer or real numbers in a special valid range
4. merged
a) labels containing information about the objects
b) arithmetic formulae consisting of variables constants and operators
c) Unicode file names

Kinds of Comment Lines

First nonblank character	Closing character (optional)	Embedded contents	Created in the	Displayed in the message window	Saved to the validated input
„["	"\}"	User's comments*.	Previous run	Yes	Yes
			Current run	Yes	Yes
,<"	„>"	Rule names among delimiters.	Previous run	No	No
			Current run	Yes	Yes
" ${ }_{\text {c }}$	„?	Error messages.	Previous run	No	No
			Current run	Yes	Yes

*The rest of the line until the total length of most complicated command is treated as comment that is until the 72nd character.

Input Redirection Command

Predicate	Object	Purpose		Nr. of fields	Length	Field name	
INCLUDE	INPUT_FILE	Redirect command input to a given file.		1	36 chars	INPUT	
Components of the file name							
Base folder		<Progdir>\|..	Data If		If the program directory is C:\TSP75\Exe then the base folder is $C: \ T S P 75 \backslash$ Data.		
Default extension		„tsr"		„Ready files"			
Other accepted extensions		$\begin{gathered} \text { "tsp" and } \\ \text { „tsc". } \end{gathered}$		„,source files" and „collected commands"			
Unicity		The full file name must be different from the names of the current and higher included files.					
This command is accepted only between packets. It is rejected within the packet starting commands and FINISH of any packet.							
Contents		Type	Restrictions				
Name and optional extension of an existing file name relative to the base folder.		Unicode string	Prohibited characters: ['/','>', '\|', '<', ',', ':', '\%', '?', '*'].				
		Prohibited character pairs: doubled separators „ ","::"; space before a „." or „\".					

Identification of PLACE Set Objects

Predicate	Object	Purpose	Nr. data fields	Validation rules of fields
MAKE	PLACESET	Make new set of places from scratch or based on an existing place set.	4	NEW_TITLE
			SPACE	
	PLACESET	Convert the coordinate system of an existing place set and store the result in a new place set.	4	NEW_TITLE
		Edit a variable set of places.	1	SPACE
CONVERT	PLACESET		INI_TITLE	

Common Data of Place Set Objects

Predicate	Object	Purpose	Nr. of fields	Length	Validation rules
LABEL	PLACESET	Mark the place set with a long label.	1	48	LABEL
FILL	COORDINATE	Fill the given column of coordinates with a given common value in the new place set.	2	12	FiLLED AXIS
				12	FILLED VALUE
OMIT	COORDINATE	Omit the given column of coordinates from the new data.	1	12	OMITTED AXIS
CALCULATE	DISTANCES	Calculate distances using the chosen method.	$\begin{gathered} 1 \\ \text { or } \\ 2 \end{gathered}$	12	METHOD
		Correct great -circle distances by radial ones for 3d spherical place sets.			RADIAL METHOD
VALIDATE	DISTANCES	Validate distances of the places in the evaluated set.	3	12	MIN NEAREST
				12	MAX FARTHEST
				12	RATIO OVER

Addition of Place Object to Place Sets Using Cartesian Coordinates

Predicate	Object	Purpose	Number of dimensions	Length (chars).	Nr. of data fields	Validation rules of fields
ADD	PLACE	Add a place to the active place set using Cartesian coordinates.	Tho	12	3	$\underline{\text { NEW NAME }}$
					$\underline{\underline{X}}$	

Addition of Place Object to Place Sets Using Spherical Coordinates

Predicate	Object	Purpose	Number of dimensions	Length (chars).	Nr. of data fields	Validation rules of fields
ADD	PLACE	Add a place to the active place set	Two	12	3	$\underline{\text { NEW NAME }}$

Replacement of Place Object to Place Sets Using Cartesian Coordinates

Predicate	Object	Purpose	Number of dimensions	Length (chars).	Nr. of data fields	Validation rules of fields
REPLACE	PLACE	Replace a place in the active place set using Cartesian coordinates.	Two	12	3	$\underline{\text { OLD NAME }}$
		Three	12	4	$\underline{\text { OLD NAME }}$	

Replacement of Place Object to Place Sets Using Spherical Coordinates

Predicate	Object	Purpose	Number of dimensions	Len. (chr).	Nr. of data fields	Validation rules of fields
REPLACE	PLACE	Replace a place in the active place set using spherical coordinates.	Two	12	3	$\underline{\text { OLD NAME }}$
			Three	12	4	$\underline{\text { LATITUDE }}$

Deletion of PLACE Objects from Place Sets

Predicate	Object	Purpose	Number of data fields	Validation rules of fields
DELETE	PLACE	Delete a place from the active place set	1	OLD NAME

End of Data for Place Sets

Predicate	Object	Purpose	Number of data fields
FINISH	PLACESET	End of this kind of data.	0

Order and Count of Commands for PLACE SETS A) Make a New Set

Order	Predicate			Ex- clude each other	Condition	Need	Has defaults	Count	More than one same
\#1	MAKE					Obligatory	No	= 1	Illegal
\#2	LABEL					Obligatory	No	$=1$	Illegal
\#3	FILL				The new set has 2D spherical coordinates.	Optional.	Yes	≤ 1	Illegal
					Otherwise	Neglected	---	$=0$	Illegal
\#4	CALCULATE					Optional.	Yes	≤ 1	Illegal
\#5	VALIDATE					Optional.	Yes	≤ 1	Illegal
\#6	ADD	RE PLA CE	DELETE	No		Optional	No	≥ 0	Mean new data
\#7	FINISH					Obligatory	---	=1	Illegal

Order and Count of Commands for Place Sets
 B) Convert an Existing Set

Order	Predicate	Exclude each other	Need	Condition	Has defau lts	Count	More than one	
$\# 1$	CONVERT		Obligatory		No	$=1$	Illegal	
$\# 2$	LABEL		Obligatory		No	$=1$	Illegal	
$\# 3$	FILL	OMIT	Yes	Conditional	Used in some Conversions	Yes	≤ 1	Illegal
\#4	CALCULATE		Optional					
\#5	VALIDATE		Optional		Yes	≤ 1	Illegal	
\#6	FINISH		Obligatory		Yes	≤ 1	Illegal	

Order and Count of Commands for PLACE SeTs C) Edit an Existing Set

Order	Predicate				Need	Condition			$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \text { Ö } \end{aligned}$	More than one same	
\#1	EDIT					Obligatory			No	= 1	Illegal
\#2	LABEL				Optional			No	≤ 1	Illegal	
\#3	FILL				Conditional	0	2D sph.	Yes	= 1	Illegal	
							erwise	---	=0	Neglected	
\#4	CALCULATE				Optional.			Yes	≤ 1	Illegal	
\#5	VALIDATE				Optional.			Yes	≤ 1	Illegal	
\#6	ADD	REPLACE	Delete	No	Optional			No	≥ 0	Legal	
\#7	FINISH				Obligatory			---	=1	Illegal	

Validation Rules for the Input Fields of PLACE SETS

Group	Type	Rule	Contents	Value set
		NEW_TITLE	Title of the new set of the places.	Nexisting place set identifier
		INI_TITLE	Places will be pasted from this earlier place set. This place set must contain at least one place.	Existing place set indentifier
		VAR_TITLE	Title of edited set.	
		NEW_NAME	The first character of the name determines the subset within the whole place set in case of restricted solution of the problem.	The name must be different from all earlier defined place names in the set.
		OLD_NAME	Any place identifier.	The name must be one of the earlier defined place names in the set.
		OLD_NAME1	Two different place identifiers.	
		OLD_NAME2		
	$\begin{aligned} & \bar{\circ} \\ & \stackrel{\text { n }}{\sqrt{n}} \end{aligned}$	SPACE	Number of dimensions of made set.	\{„two", ,three" ${ }^{\text {, }}$
		SYSTEM	Coordinate system of made set.	\{„cartesian", „spherical"\}

Allowed Conversions of the PLACE

 SETS| Before conversion | | After conversion | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dim. | Sys. |
| | | Two | Cartesian | Two | Spherical | Three | Cart. | Three | Sph. |
| Two | Cartesian | Rejected identity ${ }^{1}$ | | Impossible ${ }^{6}$ | | Allowed internal 3 | | Impossible ${ }^{6}$ | |
| | Spherical | Impossible ${ }^{6}$ | | Rejected identity ${ }^{1}$ | | Allowed internal | | Allowed internal ${ }^{5}$ | |
| Three | Cartesian | Allowed internal ${ }^{2}$ | | Possible only in two steps. ${ }^{7}$ | | Rejected identity ${ }^{1}$ | | Allowed internal | |
| | Spherical | Possible only in two steps. ${ }^{8}$ | | Allowed internal ${ }^{4}$ | | Allowed internal | | Rejected identity | |

See notes on the next slide.

Notes on the Conversions of PLACE SETS

${ }^{1}$ The identity transformations are rejected within the CONVERT PLACESET packet. Use simple MAKE PLACESET data packet instead of CONVERT.

${ }^{2}$ The omitted coordinate is defined by the OMIT COORDINATE command. The remaining two coordinates became X and Y coordinates.
${ }^{3}$ The name of new Cartesian coordinate and its common value are given by the "FILL COORDINATE <axis_name> <value>" command.
${ }^{4}$ The value of common spherical radius is given by the "FILL COORDINATE RADIUS <value>" command.
${ }^{5}$ The value of the common radius of the old place set is copied to the spherical radius coordinates of each new place.
6 These conversions are impossible based on the original coordinates.
${ }^{7}$ P\#1: convert the 3D Cartesian place set to 3D spherical; P\#2: Convert the 3D spherical place set to 2D spherical .
${ }^{8}$ P\#1: convert the 3D Spherical place set to 2D spherical; P\#2: Convert the 2D spherical place set to 2D Cartesian

Usage of the „Fill Coordinate" and „OMit Coordinate" Commands

Starting verb	Cnt of places	Dimensions and coordinate system				"FILL COORDINATE" command							
						Need	Fields			Need	Field		
		Old		New			$\begin{aligned} & \text { FILLED_A } \\ & \text { XIS } \end{aligned}$	FILLED_VALUE			OMITTE D_AXIS		
				Value set	Range		Def.	V.set					
MAKE	$=0$					2	Sph.	Optional	„radius"]-10-100,$+10^{+100}[$	6371	Prohibited	---
				Any other		Prohibited	---	---		Prohibited	---		
EDIT	$=0$	2	Sph.	2	Sph.	Optional	\{„radius"	$]-10^{+100},+10^{+100}[$		Prohibited	---		
	>0	other		Unchanged		Prohibited	---	---		Prohibited	---		
CONVERT	>0	2	Cart.	3	Cart.	Required	$\begin{aligned} & \left\{,, x^{\prime \prime}, \ldots, y ",\right. \\ & \left.\ldots z^{\prime \prime}\right\} \end{aligned}$	$]-10^{+100},+10^{+100}[$		Prohibited	---		
		3	Cart.	2	Cart.	Prohibited	---	---		Required	$\begin{aligned} & \left\{, x^{\prime \prime},, \ldots y^{\prime \prime}\right. \\ & \left., z^{\prime \prime}\right\} \end{aligned}$		
		3	Sph.	2	Sph.	Required	\{„radius" ${ }^{\text {¢ }}$	$]-10^{+100},+10^{+100}[$		Prohibited	---		
		Any other				Prohibited	---	---		Prohibited	---		
	$=0$	An				Prohibited	---	---		Prohibited	---		

Validation Rules for the Label Fields for All Objects

Rule	Contents	Type	Value set
LABEL	Label of the object	Non- empty string	The string is trimmed from both sides and its internal consecutive whitespaces are substituted with a single space. Its capitalization is not changed.

Validation Rules of the Symbols and the Values of the Coordinates

Name	Contents	Value set	
SPH_AXIS	Symbol of the filled common spherical coordinate value.	\{,radius" ${ }^{\text {¢ }}$	
CAR_AXIS	Symbol of the filled or omitted axis of the Cartesian coordinate system.	$\left\{, \ldots \prime \prime, \ldots y^{\prime \prime}, \ldots z^{\prime \prime}\right\}$	
X	Cartesian coordinate X .	$]-10^{+100},+10^{+100}[$	
Y	Cartesian coordinate Y.		
Z	Cartesian coordinate Z .		
LATITUDE	Geographical latitude φ in degrees.	[-90.0, +90.0]	
LONGITUDE	Geographical longitude λ in degrees.	[-180.0,+180.0]	
RADIAL	Radial distance from the center of the sphere [km].	For the individual place coordinates] 0,+10+100 [
		For the common radius	$\left[+10^{-100},+10^{+100}[\right.$

Commands Identifying the PLAN Objects

Predicate	Object	Purpose	Demand	Nr. of data fields	Validation rules of fields
MAKE	PLAN	Make new plan	Required	3	NEW_PLAN
EDIT	PLAN	Edit a variable plan.	Required	2	FOR_SEARCH

Commands Handling the PLAN Objects

Predicate	Object	Purpose	Nr. of flds	Len. (chr)	Validation rules of fields
LABEL	PLAN	TRANSACTION	Mark the plan with a long label.	1	48
Define repeatable transaction and number of its repetition within the search	2	12	$\underline{\text { REP TRANSACT }}$		
		36	$\underline{\text { FORMULA }}$		
EXECUTE	TRANSACTION	Define non-repeatable transaction	1	12	$\underline{\text { NRE TRANSACT }}$
FINISH	PLAN	End of data for plan.	0		

Order and Count of Commands for

Plans

Order	Predicate		Exclude each other	Condition	Count	Second and further occurrences
\#1	MAKE	EDIT	Yes		$=1$	Illegal
\#2	LABEL	Conditional	After MAKE	$=1$	Illegal	
	After EDIT					
\#3	ALLOW	No		≥ 0	The transaction symbols must be different.	
\#4	EXECUTE	No		≤ 2	Illegal	
\#5	FINISH	No		$=1$		

Validation Rules in packet PLAN I. Identification of Plans and Transactions

Name	Contents	Type	Value set
NEW_PLAN	Identifier of the created plan of transactions.	Unique Unicode string	Different from earlier plan identifiers.
VAR_PLAN	Identifier of the updated plan of transactions.		Identifier of an earlier plan not referred in a done solution.
INI_PLAN	Transactions will be pasted from this earlier place set.		The reserved word „empty" or the identifier of an earlier defined plan.
FOR_SEARCH	Method of search	symbol	\{„full", „greedy", „undo"\}
NRE_TRANSACT	Non-repeatable transaction.	symbol	Subset of \{,,permute", „close", „brace", „clip", „break"\} depending on the method of the search.
REP_TRANSACT	Repeatable Possible transaction of the above selected method.	symbol	All other transaction symbols.
FORMULA	Arithmetic expression of the maximal repeat count of the transaction.	Sequence of tokens	See in slide „Repeat Counts of Transactions".

Symbols of Simple Transactions in packet Plan

The FORMULA field after the symbols contains a valid arithmetic expression detailed the count of repetition of the transactions.

Search	Symbol	Essence	Has formula field?
FULL	$\underline{\text { PERMUTE }}$	Execute a full permutation of places.	No, because it is not repeatable.
UNDO	$\underline{\text { CLIP }}$	Clip a closed route at its longest edge.	No, because they are not repeatable.
	$\underline{\text { BREAK }}$	Break a closed route at more places.	
	$\underline{\text { START }}$	Start a new route from two free places.	CONTINUE formula field contains a valid arithmetic
	$\underline{\text { CONNECT }}$	Continue a route with a free place. expression.	
	$\underline{\text { CLOSE }}$	Close the remaining single route when final points. no unused places are present.	No, because it is not repeatable.

The sophisticated transactions are treated in the next slide.

Symbols of Sophisticated Transactions

in packet PLAN

The repeatable sophisticated transactions need the FORMULA field after the symbols. This field contains a valid arithmetic expression detailed the count of repetition of the transactions.

Search	Repeatable	Symbol	Essence
	$\underset{\sim}{\Perp}$	INSERT	Insert a single place between two places of the route.
		MERGE	Merge a whole route between two places of another route.
		EXCHANGE	Cut a place from both selected open route and insert the cut places at the original position of the other cut place.
		BRACE	Brace the routes at their both ends.
		SWAP	Join the fragments cut from different input in the best order.
		REVERSE	Cut a part of the closed route then insert in reversed order.
	$\stackrel{\bigcirc}{2}$	CLAMP	Clamp the two input routes across the selected place.

Validation Rules in packet PLAN II. Repeat Counts of Transactions

The FORMULA field must contain a valid arithmetic expression consisting of the following tokens.

Tokens	Contents	Type	Value set
CONSTANT	Sequence of decimal digits	token	N
VARIABLE	The count of places of the set	symbol	\{, $\mathrm{p}^{\prime \prime}$ \}
OPERATOR	Infix, having two arguments	token or character	$\left\{,+{ }^{\prime \prime}, \ldots{ }^{\prime \prime}, \ldots{ }^{* \prime \prime},{ }^{\wedge \prime \prime}, \ldots m o d "\right.$, „div"\}
	Unary		\{„+", „-"'
FUNCTION	$\mathbf{N} \mapsto \mathbf{N}$ with one argument (result rounded down)	token	\{„sqrt", „Ig" \}
PARENTHESIS	Opening and closing parentheses	symbol	$\left\{,\left({ }^{\prime}, \ldots\right){ }^{\prime \prime}\right.$ \}

Examples of Arithmetic Expressions in Allowed Number of Transactions

Invalid		Why?
i.	0.0	decimal dot lonely operator ii.
iii.	q	unknown variable unfinished expression
iv.	$p-3-$	invalid operator invalid operator
v.	$p / 3-5$	illegal function adjacent operators
vi.	$p \% 3-5$	In p
vii.	$p^{* * 3}$	illegal function viii.
ix.	$\sin p$	
x.	$(p-1))$	badly nested parentheses

Ready Plans

The most frequently used plans can be read from ready input files. These plans are listed here and grouped as shown in the second and third line of the chart. They have to be read in from the corresponding tsr files by an INCLUDE INPUT_FILE command of the data folder before they can be referred in the INI PLAN field.

Commands of Solution Objects

Predicate	Object	Purpose	Flds	Lengths	Validation rules
MAKE	SOLUTION	Define a solution starting from unconnected places.	3	12	OLD TITLE
					NEW SOLUTION
					OLD PLAN
LABEL	SOLUTION	Mark the solution with a long label.	1	48	LABEL
CONTINUE	SOLUTION	Use calculated distances and intermediate results of an old solution.	1	12	OLD SOLUTION
CALCULATE	DISTANCES	Calculate distances using the chosen method.	$\begin{gathered} 1 \\ \text { or } \\ 2 \end{gathered}$	12	METHOD
		Correct great -circle distances by radial ones for 3d spherical place sets.		12	RADIAL METHOD
VALIDATE	DISTANCES	Validate distances of the places in the evaluated set.	3	12	MIN NEAREST
				12	MAX FARTHEST
				12	RATIO OVER
RESTRICT	SOLUTION	Restrict the solution to a subset of places having a given maximal distance of a central place.	3	12	FIRSTLETTERS
BEGIN	PLACE	Begin the solution at the given place.	1	12	OLD NAME
FIX	EDGE	Connect the given places before the execution of the referenced plan. Do not allow to cut the given edge.	2	12	OLD NAME1 ${ }^{\text {D }}$
				12	OLD NAME2place names are
PROHIBIT	EDGE	Cut given places before the execution of the referenced plan. Do not allow to join the given edge.	2	12	OLD NAME1
				12	OLD NAME2
EXECUTE	PLAN	Execute the referenced plan in deterministic mode.	0		
RANDOMIZE	PLAN	Execute the referenced plan with randomized mode with thegiven ω smashing parameter.	1	12	SMASH WIDTH
FINISH	SOLUTION	Finish data packet, execute solution.	0		

Order and Count of Commands for Solutions

Order	Predicate		Exclude	Need	For search	Count	Repetition
\#1	MAKE			Obligatory	All	=1	Illegal
\#2	LABEL			Obligatory	All	=1	Illegal
\#3	CALCULATE		Yes	Obligatory	All	$=1$	Illegal
\#4	VALIDATE			Optional ${ }^{1}$	All	≤ 1	Illegal
\#5		CONTINUE		Obligatory	All	$=1$	Illegal
\#6	RESTRICT			Optional	All	≤ 1	Illegal
\#7	BEGIN		No	Conditional	"Greedr" and „UNDO" 23	≤ 1	Illegal
	FIX		No			≥ 0	Allowed
	PROHIBIT		No			≥ 0	Allowed
\#8	EXECUTE			Obligatory	All		Illegal
\#9	FINISH			Obligatory	All	=1	Illegal

${ }^{1}$ The interactive counterpart of the CALCULATE+ VALIDATE commands is the Distance Calculation and Validation Options dialog.
${ }^{2}$ Each place name pair must be referred in only one FIX or PROHIBIT command
${ }^{3}$ The named places must not be out of the restricted area.
${ }^{4}$ The RANDOMIZE command changes a deterministic GREEDY or UNDO search to a randomized one. It is illegal for FULL searches.

Validation Rules of Identifiers within the Solution Packet

Name	Contents	Type	Value set
OLD_PLAN	Identifier of a preset plan of transactions.	Unique Unicode string	Identifiers of the stored plans.
OLD_TITLE	Identifier of the solved place set.		Titles of the earlier defined place sets.
NEW_SOLUTION	Identifier of the new solution.		Unoccupied solution identifier.
OLD_SOLUTION	Identifier of the edited solution.		Identifier of an earlier solution of the same data set.
FIRSTLETTERS	Identifier of the central place of the restricted place set.	Unicode string	First letters of the place names included in the restricted solution.

Validation Rules of Distances - Solution Packet

Name	Contents		Type	Default value substituted in blank field		Value set	
			Coordinate system				
			„cartesian"	„spherical"			
METHOD	Method of the distance calculation.			symbol	"eucledian"	"great_circle"	\{„eucledian", "manhattan", „,great_circle" $\}$
RADIAL_METHOD	Correction of great-circle distance with the radius.			symbol	---	„eucledian"	\{„eucledian", „manhattan"\}
SMASH_WIDTH	Smashing parameter ω of the randomized search.		Unsigned real	2.0		$\begin{gathered} 0.001<=\text { SMASH_WI } \\ \text { DTH }<=10.0 . \end{gathered}$	
MIN_NEAREST	Bounds of distances from other places [km].	Lower bound for nearest.	Unsigned real	1 km		1<= MIN_NEAREST	
MAX_FARTHEST		Upper bound for farthest.		5000 km	1.1* π^{*} RADIUS_ OF_EARTH= $=22017 \mathrm{~km}$	2*MIN_NEAREST <= MAX_FARTHEST	
RATIO_OVER	The place is majority of o too far from	valid if the her ones are			75	```0.5 <=RATIO_OVER<=1.0 See Validation of Places```	

Identification and Contents of a Simple

 REPORT| Predica
 te | Object | Purpose | FId.
 cnt. | Len. | Fields |
| :--- | :--- | :--- | :---: | :---: | :--- |
| MAKE | REPORT | Report a given solution
 made of a given place set
 to the selected device split
 to separate tables or
 merged in a common file or
 windows, respectively. | 4 | 12 | EVA TITLE |
| | | | 12 | EVA SOLUTION | |
| | | 12 | DEVICE | | |
| PRINT | TABLE | Select reported table. | 12 | SPLIT | |
| FINISH | REPORT | Finish REPORT packet. | | | TABLE |

The reports inherit their labels from the included solutions.
The report files are written to the <Progdir>|..|Data folder. The roots of the automatically generated names are the concatenation of the identifier of the reported solution and the 15-digit timestamp of format <yyyyMMddhhmmqqq> . The extension of the report files is formed from the table names.

Comparison of Two Saved REPORT

Files

The comparison is made externally using the WinMerge program.

Predicate	Object	Purpose	Fld. cnt.	Len*	Valida- tion rules of fields	Def. ext.	Base folder	
INSPECT	REPORT	Name of first	1	36	INPUT	rou	<Progdir>\|..	Data
COMPARE	REPORT	second compared report or data file	1	36	INPUT	rou	If the program directory is C:\TSP75\Exe then the base folder is C:\TSP75\Data.	
FINISH	REPORT	Finish report packet.	0					

[^1]
Order and Count of Commands for Simple Reports

Order	Predicate	Need	Count	Second and further occurrences
$\# 1$	MAKE	Obligatory	$=1$	Illegal
$\# 2$	PRINT	Obligatory	≥ 1	Makes other table
\#3	FINISH	Obligatory	$=1$	Illegal

Order and Count of Commands for Comparative Reports

Order	Predicate	Need	Count	Second and further occurrences
\#1	INSPECT	Obligatory	$=1$	Illegal
\#2	COMPARE	Obligatory	$=1$	Illegal
\#3	FINISH	Obligatory	$=1$	Illegal

Validation Rules of Input Fields for Report and Figure Objects

Field name	Contents	Length, chars	Type	Value set
EVA_SOLUTION	Identifier of the (first) reported solution	12	Unique Unicode string	Identifier of an executed solution.
EVA_TITLE	Identifier of the (first) evaluated place set	12		Title of an earlier defined place set treated in the above solution.
SPLIT	Are the Report tables split?	12	symbol	\{no: „merged", yes: „separated"\}
INPUT	Reduced name* of the inspected or compared existing REPORT or any other text file.	36	Unicode string	Prohibited characters before the dot of the extension: ['/', '>', '\|', '<', ',', ':', "\%"]
DEVICE	Output device	12	symbol	\{,screen", „disk"\} **

* The base directory of the reduced file names is the data subfolder of the program directory that is the<Progdir>|..|Data folder. The extension of the output file is optional. The root of the output file names i.e. the name without path and extension must be unique in the actual run of the TSP program.
** The FIGURES are written only to DISK as extended metafiles therefore only REPORTS need DEVICE. In the latest version of the program.

Possible Values of the Table Field of the

REPORT Command

Symbol	Extension of the table	Reported table
„places"	"pla"	Source PLACE SET.
„distances"	„dis"	Triangular DISTANCE MATRIX calculated by the preset method.
„formulae"	„for"	Identifier of Plan and formulae for allowed transactions as functions of the p counter of places
„routes"	"rou"	Final route(s) and their total length(s).
„transactions"	„tra"	Summary of allowed and executed number of TRANSACTIONS.
„process"	„pro"	Order of joining and cutting the edges between pairs of places.
"merged"	"mrg"	Merged file containing two or more kinds of tables.

Identification of FIGURE

Predicate	Object	Purpose	FId. Cnt.	Length	Validation rules of fields
MAKE	FIGURE	Start of data packet giving the solution displayed in the background.*	2	12	EVA_TITLE
		12	EVA_SOLUTION		
LABEL	FIGURE	Long label.	1	48	$\underline{\text { LABEL }}$
COMPARE	SOLUTION	Identifier of compared solution displayed in the foregound	2	12	EVA_TITLE
			12	EVA_SOLUTION	

* Two fields are deleted from the MAKE FIGURE command in the latest version of the program and the INCLUDE SOLUTION command is merged with it.

1. The figures are named automatically based on the identifier of the background solution and the timestamp of their creation.
2. Their device may be only disk.

Lookout and Display of FIGURE

Predicate	Object	Purpose	FId s.	Len VSE	VIEW
VINISH	FIGURE	Use predefined settings of fields and views	2	12	VAL_VIEW_ID
	Finish data packet.		12	VAL_SET_ID	

Validation Rules of Fields in
 Commands Displaying FIGURES

Type	Field name	Inormation contained	Range	Unit
string	VAL_VIEW_ID	Identifier of valid predefined view	Unicode string	
string	VAL_SET_ID	Identifier of valid loaded settings	Unicode string	

Order and Count of Commands for Figures

Order	Predicate	Need	Condition	Count	Second and further occurrences
\#1	MAKE	Obligatory		$=1$	Illegal
\#2	LABEL	Obligatory		$=1$	Illegal
\#3	COMPARE	Optional	A foreground solution drawn over it	≤ 1	Illegal
\#4	USE	Obligatory		$=1$	Illegal
\#5	FINISH	Obligatory		$=1$	Illegal

Identification of SETTINGS

Predicat e	Object	Purpose	FId. Cnt.	$\begin{aligned} & \text { Le } \\ & \text { n } \end{aligned}$	Validation rules of fields	Default and accepted extensions	
LOAD	SETTINGS	Identify settings	2	12	NEW_SET_ID		
				36	INDIRECT_FILE	,ind".	
						Base folder: <Progdir>\|..	Data
LABEL	SETTINGS	Long label	1	48	LABEL		
FINISH	SETTINGS	Close packet	0				

Order and Count of Commands for Settings

Order	Command is	Count	Predicate	Object	Second and further occurrences
$\# 1$	Obligatory	$=1$	LOAD	SETTINGS	Illegal
$\# 2$	Obligatory	$=1$	LABEL	SETTINGS	Illegal
$\# 3$	Obligatory	$=1$	FINISH	SETTINGS	Illegal

Validation Rules for Identifiers and File Names for the Settings and Styles Packets

Type	Contents	Name	Value set
string	Identifier of new loaded settings	NEW_SET_ID	Unique unicode string
string	Name of the loaded indirect file containing the names of the files of individual settings	INDIRECT_FILE	Excluded characters= $[' / ', '>', ' I ', ~ '<', ~$ $', ', ~ ': ', ~ " \% "] ~$
string	Name of the loaded style definition data base.	STYLES_FILE	

Consultable Files Containing Prolog

Terms

- The Prolog terms start with a lowercase word [=functor], followed by an opening parenthesis, quoted strings, numbers and/or embedded terms separated by commas, finished by a closing parenthesis. The lines are closed by and period.

```
- compose(p("Background","Cut
    Edges","Lines","Style"),s(1,"Dashed","~ (Pen & Screen)")).
```

- The consultable files begin with the „clauses" word and contain comments, empty lines and terms.
- The terms must be declared in the reading program properly.
- The files may contain comments between '\%' character and newline character.

```
- style_setting(7es(2,"table header",rgb(0,0,0),rgb (0, 255,255),fo("Lucida
```

 Console", "Eastern European", monospace,true,fa1se,fa1se,10))).
 - \% 2014. 11. $16.14: 20 \mathrm{Bg}$ and fg of table header modified.
- \% 2014. 11. 16.14:17 Title and footer styles changed.
- This program consults with
a. indirect files made by the TestDraw program described in the next pages
b. then by the files of the settings mentioned in them;
c. style definition data bases made by
i. the Colorful Report program
ii. or the TSP program itself.

The Indirect Files

The indirect files contain the terms referring to the consultable files containing the settings. These files are generated by the TestDraw program.

Sample of indirect file

```
clauses
saved_as("nul").
indirect("Style","C:\\TestDraw74\\Exe\\on grey plot.savs").
indirect("Composition","C:\\TestDraw74\\Exe\\on grey plot.savc").
indirect("Areas","C:\\TestDraw74\\Exe\\neither top nor right scales.sava").
indirect("Location","C:\\TestDraw74\\Exe\\1.savl").
indirect("Font","C:\\TestDraw74\\Exe\\1.savf").
```

The first line containing the single "clauses" word is obligatory.
The saved as (...) term is not reliable. It must be defined in the program but its content is unused.

Saved Settings and Styles

Role	Saved terms	Extension
Indirect list of files referring to files of	File names	*.ind
- Rectangular areas of the figure	Area	*.sava
- Color compositions	Color	*.savc
- Font definitions and sample texts	Font	*.savf
- Locations of the message window	Location	*.savl
- Pen styles	Pen style	*.savs
- Styles of colored message texts	Style_setting	*.xmp and 5 digits
The structures of the terms are described in the help file of the TESTDRAW and the Colorful Report program, respectively.		

Identification of STYLES

Predicate	Object	Purpose	FId. Cnt.	¢	Validation rules of fields	Default and accepted extensions
LOAD	STYLES	Load a database containing the styles (fonts and colors) of the colored messages.	1	36	STYLES_FILE	„xmp"; ,,xmm" and "xpp" +5 digits
						Base folder: <Progdir>1..\|Data
RESET	STYLES	Reset the default styles.	0			
FINISH	STYLES	Close packet	0			

Order and Count of Commands for STYLES

$\begin{aligned} & \text { 毋" } \\ & \hline \text { " } \end{aligned}$	Command is	㝘	Predicate		Exclude each other	Object	Second and further occurrences
\#1	Obligatory	= 1	LOAD	RESET	Yes	STYLES	Illegal
\#2	Obligatory	= 1	FINISH			STYLES	Illegal

Identification of a New VIEW

Predicate	Object	Purpose	Fld. Cnt.	Len.	$\frac{\text { Validation rules }}{\text { of fields }}$ MAKE VIEW
	Create a new view and fix it number of dimensions and coordinate system.	3	12	NEW_VIEW_ID	
			12	SPACE	
LABEL	VIEW	Long label.	12	SYSTEM	

Identification of an Edited VIEW

Predicate	Object	Purpose	Fld. cnt.	Len.	$\underline{\text { Validation }}$ rules of fields
EDIT	VIEW	Edit an existing but not yet referenced view.	1	12	VAR_VIEW_ID
LABEL	VIEW	Long label.	1	48	$\underline{\text { LABEL }}$

The number of dimensions and the coordinate system cannot be corrected.

Setting the Shown Range of Views O. General Rules

This commands have three obligatory common symbolic fields

1. Verb
2. Object
3. Coordinate (axis)
$>$ and two conditional real fields
4. Constraint
5. Other constraint.
$>$ The required number of commands setting the shown ranges is
i. Is less than or equal to the number of dimensions of the view.
ii. At most one range setting command has to belong to each coordinates. If more range settigs are found for a coordinate the onyl the last one is valid.
iii. If the range setting is missing for a coordinate then the implicit „FIT" setting is used.
6. The legal verbs in the first field are
A. „fit",
B. "limit",
C. "center".
7. The second fields has to contain „view" object name.
8. The third field contains the symbol of the axis whose accepted values depending on the
i. number of dimensions and
ii. the coordinate system have been set in the "MAKE VIEW" command.
9. The shown ranges of the coordinates are in fields \#4 and \#5.
A. These ranges are neglected and substituted with zeroes after the „FIT" verb;
B. the lower limit for all coordinates but longitude",
C. the central meridian for the longitude coordinate.
10. The other value of the range
A. These ranges are neglected and substituted with zeroes after the „FIT" verb;
B. the upper limit for all coordinates except longitude",
C. the extent of the shown range of longitudes.

Setting the Shown Range of VIEWS

 1. Two-dimensional PLACE SETS defined in Cartesian Coordinates| Predicate | Object | Purpose | Flds. | Len. chr. | Contents | Validation rules of fields |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LIMIT | VIEW | Set lower and higher limits of the view. | 3 | 12 | Coordinate | COOR TWO CAR |
| | | | | 12 | Lower limit | LOWEST XYZ |
| | | | | 12 | Upper limit | HIGHEST XYZ |
| FIT | VIEW | Fit the range of the given coordinate to the displayed place sets when the figure is drawn. | 1 | 12 | Coordinate | COOR TWO CAR |
| CENTER | VIEW | Set center and | 3 | 12 | Coordinate | COOR TWO CAR |
| | | extent of the view. | | 12 | Central meridian | CENTER_XYZ |
| | | | | 12 | Extent of longitude | EXTENT_XYZ |

Setting the Shown Range of Views II. Three-dimensional PLACE SETS defined in Cartesian Coordinates

Predicate	Object	Purpose	Nr. of fids.	Len. chr.	Contents	Validation rules of fields
LIMIT	VIEW	Set lower and higher limits of the view.	3	12	Coordinate	COOR THREE CAR
		VIEW	Set center and extent of the view.	3	12	Lower limit
			12	Upper limit	$\underline{\text { LIGWEST XYZ }}$	
CENTER	VIEW	Fit the range XYZ of the given FOordinate to the displayed place sets when the figure is drawn.	1	12	Coordinate	COOR TWO SPH

Setting the Shown Range of VIEWS III. Two-dimensional PLACE SETS defined in Spherical Coordinates

Predica te	Object	Purpose	Nr. of flds.	Len	Contents	Validation rules of fields	
						"latituutude	"longitude"
LIMIT	VIEW	Set lower and higher limits of the view.	3	12	Coordinate	COOR TWO SPH	
				12	Lower limit	LOWEST_LAT	LOWEST_LON
				12	Upper limit	HIGHEST_LAT	HIGHEST_LON
CENTER	VIEW	Set center and extent of the view.	3	12	Coordinate	COOR TWO SPH	
				12	Central meridian	CENTER_LAT	EXTENT_LAT
				12	Extent of longitude	EXTENT_LON	EXTENT_LON
FIT	VIEW	Fit the range of the given coordinate to the displayed place sets when the figure is drawn.	1	12	Coordinate	COOR TWO SP	

Setting the Shown Range of Views

 IV. Three-dimensional PLACE SETS defined in Spherical Coordinates| Predicate | Object | Purpose | Nr. of flds. | Len. | Contents | Validation rules of fields | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | „latitude" | „Iongitude" | „radial" |
| LIMIT | VIEW | Set lower and higher limits of the view. | 3 | 12 | Coordinate | COOR THREE SPH The validation rules of the following fields depend on its value. | | |
| | | | | 12 | Lower limit | LOWEST LAT | LOWEST_LON | LOWEST_RAD |
| | | | | 12 | Upper limit | HIGHEST_LAT | HIGHEST_LAT | HIGHEST_RAD |
| CENTER | VIEW | Set center and extent of the view. | 3 | 12 | Coordinate | COOR THREE SPH | | |
| | | | | 12 | 12 | CENTER LON | CENTER_LAT | CENTER_RAD |
| | | | | 12 | 12 | EXTENT_LON | EXTENT_LON | EXTENT_RAD |
| FIT | VIEW | Fit the range of the given coordinate to the minimal and maximal values of the displayed | 1 | 12 | Coordinate | COOR THRE | SPH | |

Scaling, Mapping and Projection

Predicate	Object	Purpose	Flds.	Len.	Information in the field	Fields and Validation rules
OMIT	COORDINATE	Omit a coordinate from the three instead of projection.	1	12	Symbol of the omitted coordinate.	Depends on the coordinate system and number of dimensions
					Invalidate earlier given omission.	„none"
PROJECT	SPACE	Select collineation of threedimensional data to a plane.	1	12	Explicit or implicit method of collineation.	COLLINEATION
MAP	SPHERE	Select map projection of	2	12	Explicit or implicit mode of mapping.	MAPMODE
		the surface of the sphere.		12	Central pole of the mapping.	POLE

End of VIEW Packet

Predicate	Object	Purpose	Flds.
FINISH	VIEW	Close packet.	0

Order and Count of Commands within the View Packets I.

Order		Predicate		Exclude each other	Need	Condition	Count	Second and further occurrences	
Group	Within group			Total					
I. Identi- fication	\#1	MAKE	EDIT		Yes	Obligatory	Select one of them	$=1$	Illegal
	\#2	LABEL		No	Conditional	After MAKE	$=1$	Illegal	
				After EDIT		≤ 1			
	Grand total within the group							≤ 2	
II. Shaping	\#1	OMIT		No	Optional	See ${ }_{\mu}$ Allowed Sequences of Projection Commands".	≤ 1	Illegal	
	\#2	MAP		No	Optional		≤ 1		
	\#3	PROJECT		No	Optional		≤ 1		
	Grand total within the group						≤ 3		

Order and Count of Commands within the VIEW Packets II.

Order		Predicate	Exclude	Need	Condition		Count		Second and further occurrences for the same coordinate
Group	Within group						For a given coordinate	Total	
III. Range of displayed places	\#1	LIMIT	Yes if the axis name is the same.	Optional	Number of dimensions	$=2$	≤ 1	≤ 2	Overwrite first ones.
						$=3$	≤ 1	≤ 3	
						$=2$	≤ 1	≤ 2	
	\#2	CENTER				$=3$	≤ 1	≤ 3	
	\#3	FIT				$=2$	≤ 1	≤ 2	
						$=3$	≤ 1	≤ 3	
	Grand total within the group					$=2$	=1	=2	
						$=3$	=1	=3	
IV. Final	Last	FINISH	No	Obligatory				$=1$	Illegal

Allowed Sequences of Projection Commands

Accepted and Default Values of Collineation Field

This fields contains the method of projection of the place set.
If this command is missing then the recommended of projection is used.
If recommended projection is not found then the default value is used.
The available projections are described in the chapter of algorithms.

Value type	Number of dimensions and coordinate system	
	$3-$ dimensional spherical coordinates	
Recommended value	Depends on presence of extreme relative radial distances.	"isometric"
Default value	"cavalier"	

Accepted and Default Values of MAPMODE and

Pole Fields

This fields contains the method of mapping of the spherical coordinates. If this command is missing then the default methods of projection are used. If recommended projection is not found then the default value is used.
The recommended mode is determined as described in the chapter of algorithms.
The Pole field is optional. It is used only with the Postel projection.

Value type	Value set of Mapmode	Value set of Pole	Availability
Recommended value	„recommended"		based on the distribution of latitudes.
Default value	"cylindrical"	„northern"	
Explicit values	"sinusoidal"	„northern"	
	„xyz"	„northern"	3-d spherical view without omitted axis.
	„postel"	"northern"	No places in the opposite
		"southern"	hemisphere
	„cylindrical"	„northern"	No places near the poles.

Validation Rules of VIEWs I. Cartesian Coordinate System

1. Rules involving only one field

Name	Contents	Default value	Type and unit	Value set
LOWEST_XYZ	Lower limit of the view for the given coordinate	1.0	real, km	$]-\infty,+\infty[$
HIGHEST_XYZ	Higher limit of the view for the given coordinate	2.0		
CENTER_XYZ	Center of the view	1.0		
EXTENT_XYZ	Extent of he view	2.0	real, km	$] 0,+\infty[$

2. Rules involving two fields

Only LOWEST_XYZ < HIGHEST_XYZ is accepted.

II. LIMIT Fields of the Spherical Coordinate System

1. Rules involving only one field

Type and unit	Coordinat e	Quality	Name	Default value	Value set	Meaning
Real, degrees	Latitude	Lowest	LOWEST_LAT	1.0	[-90;+90]	Use these values as limits of shown latitudes.
		Highest	HIGHEST_LAT	2.0		
Real, degrees	Longitude	Lowest	LOWEST_LON	1.0	[-180;+180]	Use these values as limits of shown longitudes.
		Highest	HIGHEST_LON	2.0		
Real, km	Radial distance	Lowest	LOWEST_RAD	1.0	[$0,+\infty$ [Use these values as limits of show radial distances.
		Highest	HIGHEST_RAD	2.0] 0, + [

2. Rules involving two fields
i. Only LOWEST_LAT < HIGHEST_LAT is valid.
ii. Only LOWEST_LON < HIGHEST_LON is valid.
iii. Only LOWEST_RAD < HIGHEST_RAD is valid.

Validation Rules for Identifiers for the VIEW

 packets| Type | Contents | Name | Value set |
| :--- | :--- | :--- | :--- |
| String | Identifier of newly defined view | NEW_VIEW_ID | Unique Unicode
 string |
| String | Identifier of defined view which
 has not been referenced in a figure | VAR_VIEW_ID | Unique Unicode
 string |
| Symbol | Number of dimensions | SPACE | "two" or „three" |
| Symbol | Coordinate system | SYSTEM | "Cartesian" or |
| "Spherical" | | | |

Accepted Values of Coordinate Naming

Fields

These fields are present in the OMIT COORDINATE and the LIMIT VIEW, CENTER VIEW commands.

Coor. system	Cartesian		Spherical	
Dimensions	2	3	2	3
	$\frac{\text { COOR TWO C }}{\underline{A R}}$	$\frac{\text { COOR THREE C }}{\underline{A R}}$	COOR_TWO SPH	$\frac{\text { COOR THREE S }}{\mathrm{PH}}$
„x"	Valid	Valid	Invalid	Invalid
„\%"	Valid	Valid	Invalid	Invalid
„Z"	Invalid	Valid	Invalid	Invalid
"latitude"	Invalid	Invalid	Valid	Valid
„longitude"	Invalid	Invalid	Valid	Valid
"radial"	Invalid	Invalid	Invalid	Valid

Validation Rules of CENTERS and ExTENTS of I. Spherical Coordinate System

Field(S)	Contents	Type and unit	Value set
CENTER_LAT	Center of the view for the latitudes	Real, degrees	$[-90,+90]$
EXTENT_LAT	Extension of the view for the latitudes.	Real, degrees	$] 0,+90]$
CENTER_LAT-EXTENT_LAT	Lower limit for the latitudes.	Real, degrees	$[-90,+90[$
CENTER_LAT+EXTENT_LAT	Upper limit for the latitudes.	Real, degrees	$]-90,+90]$
CENTER_LON	Central meridian of the view for the longitudes	Real, degrees	$[-180,+180]$
EXTENT_LON	Extension of the view for the longitudes.	Real, degrees	$] 0,+180]$
CENTER_RAD	Center of the view for the radial distances.	Real, km	$] 0,+\infty[$
EXTENT_RAD	Extension of the view for the radial disances.	Real, km	$] 0,+\infty[$
CENTER_RAD-EXTENT_RAD	Lower limit for theradial distances.	Real, km	$[0,+\infty[$

Table of Understood Verbs

The first 12 characters of the command lines may contain the following verbs after trimming and converting them to lower case:

Verb	Verb	Verb	New verbs
add	execute	make	begin
allow	fill	map	fix
calculate	finish	omit	prohibit
center	fit	print	restrict
compare	include	project	randomize
continue	inspect	replace	validate
convert	label	use	reset
delete	limit		
edit	load		

Table of Understood Objects

The second 12 characters of the command lines may contain the following objects after trimming and converting them to lower case :

Object	Object
coordinate	settings
distances	solution
figure	space
input_file	sphere
place	styles
placeSet	table
plan	transaction
report	view
edge	

General Sequence of Steps within the Data Packets

I. Each data packet has at most three two possible starting commands, typically „,make <object>" and „edit <object>". See table on the next page.
II. The packets making objects usually must be continued with a mandatory "label <object> <non-empty text>" command. See table on the next page.
III. The edited packets may be continued by an optional „label <object>" command.
IV. Some properties of the objects cannot be later changed therefore some verb+object combinations are Rejected identity in „edit <object>" commands.
V. Some properties of the objects are valid only in certain number of dimensions and/or coordinate system.
VI. Some commands may be mixed and/or repeated.
VII. There are commands in certain packets which can be followed exclusively by the „finish <object>" command.
VIII. Each packet has to be closed by the corresponding „finish <object>" command.

Summary of Command Order

The validity of the verb+object pairs of the command lines depend on the steps determined by the previous commands. The table of status changes is published as an Excel table.

Start and End of Packets and Labeling										
Verb		Object name = Packet name:								
		figure	placeSet	plan	report	styles	settings	solution	view	Total
S A R T	continue							LM2		$\underline{1}$
	edit		LO2	LO2					LO2	$\underline{3}$
	inspect				L--					$\underline{1}$
	load					L-	LM2			$\underline{2}$
	reset					L-				$\underline{2}$
	make	LM2	LM2	LM2	LM2			LM2	LM2	$\underline{6}$
	convert		LM2							$\underline{1}$
END	finish	1	1	1	1	1	1	1	1	$\underline{9}$
Legend		LM2	The „label <object> <text>" is the mandatory second command of the packet.							
		LO2	The „label <object> <text>" is an optional second command of the packet.							
		L--	The packet does not contain the „label <object> <text>" command.							

Commands Allowed in Certain Cases

- Some packets contain such commands which can be issued only after starting by „make" verb, e. g.
- „calculate distances",
- "correct distances". See more at the description of the data packets.
- Some properties of the objects are valid only in certain number of dimensions and/or coordinate system, e. g.
- „insert coordinate",
- „omit coordinate".
- „calculate coordinate";
- „correct distances",
- See more at the description of the data packets.

[^0]: Remarks:
 1 The full search is available only if the p or s number of involved places does is less than the given threshold m given in the interactive Solution Options dialog documented in the help file of the itneractive data entry.
 2 The full search may not be continued if it extends to all places of the set.
 3 Deterministic mode: If more equidistant place pairs are present then the alphabetical order of their identifiers determines the chosen edge(s).
 4 Random mode: If more equidistant place pairs are present then the best result is chosen by adding random correction to the distances which provide the selection even from slightly longer edges.

[^1]: * The total length of reduced file name including the ,,." and added default extension must not exceed 36 characters.

